
Jazzy Beach Critters
A Demonstration of Real-Time Music Generation

with Application to Games

Donya Quick and Christopher N. Burrows

http://www.donyaquick.com/jazzy-beach-critters/

http://www.donyaquick.com/jazzy-beach-critters/

What Jazzy Beach Critters Explores

• Can we generate novel game music on the fly at the score level?
• The vast majority of games use pre-rendered audio for music.

• Transitions just involve cross-fading, not choosing notes.

• Score-level generation in games usually still has a pre-composed database.
• Generating good, novel musical scores can be a very hard (slow) task!

• But what about improvisational music like jazz?

• What technical/perceptual issues have to be addressed?
• Can a commonly used game platform like Unity deal with the timing

constraints of generative music with strict metrical structure?

• How to adapt to changes in the environment and user actions?

2

Jazzy Beach Critters Overview
• A single Unity scene

• Three critters play music together: a crab, hermit crab, and snail.
• Each animal is a different part/instrument.

• Critters have 3 moods: happy, neutral, and angry.
• A critter’s mood affects the music it plays. Users can change those moods.

• User actions:

3

Place food to
move the critters.

Pet a critter to make
it happier and bring

it towards you.

Poke a critter and it
will move away and

become angrier.

Click the beach
ball to change

styles.

Trade solos
with the crab.

Newer than the paper

Jazzy Beach Critters Overview

• Real-Time Generation of Musical Scores
• Nothing is pre-composed / pre-rendered to audio.
• Sound synthesis happens within the game environment.
• Played notes spawn 3D note objects.
• All critters have a shared key context – which is chosen

in real time just ahead of the score generation.

• Multiple levels of temporal granularity:
• Sound effects corresponding to visual events or user

actions. Only graphical synchrony is important.
• Sound for musical notes requires more precise timing (<10msec variance).

Only musical synchrony is important.
• Musical mood/style changes must wait for the next sensible musical boundary.

• Transitions happen at measure/bar lines in this case.

4

Gen. music
segment 1

Gen. music
segment 2

Gen. music
Segment 3

Play segment 1 Play segment 2

Collect environmental
context for segment 2

Collect environmental
context for segment 3

Preparation In-Game

Gameplay starts

…

Maximum response time for adapting
to environmental changes in the music.

…

Time

Game
Environment
(Unity/C#)

Music Generation
(Haskell)

Jazzy Beach Critters Workflow

5

Server

Generative Music Service

Database

Other Services with
Similar Interfaces

Jazzy Beach Critters Game Interface (Unity / C#)

MUSICA Project Interface (Python, JS)

6

Donya Quick & Chris Burrows

Donya Quick, Chris Kim, & David Burke
http://www.musicaresearch.org

Jazzy Beach Critters can also run in a completely
offline, self-contained capacity, but our online
demo works with a client-server model and can
run in a browser.

Future Directions

• Other game elements within this project:
• Points system to score user-played music

• More complex critter behavior
• Critters move around on their own, some critters don’t like each other, etc.

• Let the user add and remove critters that play different parts/styles.
• Some critters may be earned by performing well with simpler/easier ones.

• Incorporation of more recently designed jazz algorithms from the MUSICA project.

• Larger / longer-term possibilities:
• Story-driven, peter-and-the-wolf themed games where the soundtrack is

generated by the characters in real time.

• Educational tools for children that use game elements to make learning music
fun (like guitar hero, but musically interactive & improvisational).

7

Thank You!
http://www.donyaquick.com/jazzy-beach-critters

Donya Quick, donyaquick@gmail.com
• Music generation, system design, critter design

Christopher N. Burrows, christopher.n.burrows@gmail.com
• Unity & C# scripts, 3D modeling & animation

8

